45 research outputs found

    The Wave Structure Function And Temporal Frequency Spread In Weak To Strong Optical Turbulence

    Get PDF
    This paper presents analytic expressions for the wave structure function, frequency spread of the temporal frequency spectrum, and the temporal frequency spectrum of optical signals propagating through a random medium, specifically the Earth’s atmosphere. The results are believed to be valid for all optical turbulence conditions. These expressions are developed using the Rytov approximation method. Generally, the validity of statistical quantities obtained via this method is restricted to conditions of weak optical turbulence. However, in this work, by using a modification of the effective atmospheric spectral model presented by Andrews et al. for scintillation index, wave structure function expressions have been derived that are valid in all turbulence conditions as evidenced by comparison to experimental data. Analytic wave structure function results are developed for plane, spherical, and Gaussian-beam waves for one-way propagation. For the special case of a spherical wave, comparisons are made with experimental data. The double pass case is also considered. Analytic expressions for the wave structure function are given that incorporate reflection from a smooth target for an incident spherical wave. Additionally, analytic expressions for the frequency spread of the temporal frequency spectrum and the temporal frequency spectrum itself, after one-way propagation for horizontal and slant paths, are derived for plane and spherical waves. These results are also based on the Rytov perturbation method . Expressions that are believed to be valid in all turbulence conditions are also developed by use of the effective atmospheric spectral model used in the wave structure function development. Finally, double pass frequency spread expressions are also presented. As in the case of the wave structure function, reflection from a smooth target with an incident spherical wave is considered

    Opening Access to Visual Exploration of Audiovisual Digital Biomarkers: an OpenDBM Analytics Tool

    Full text link
    Digital biomarkers (DBMs) are a growing field and increasingly tested in the therapeutic areas of psychiatric and neurodegenerative disorders. Meanwhile, isolated silos of knowledge of audiovisual DBMs use in industry, academia, and clinics hinder their widespread adoption in clinical research. How can we help these non-technical domain experts to explore audiovisual digital biomarkers? The use of open source software in biomedical research to extract patient behavior changes is growing and inspiring a shift toward accessibility to address this problem. OpenDBM integrates several popular audio and visual open source behavior extraction toolkits. We present a visual analysis tool as an extension of the growing open source software, OpenDBM, to promote the adoption of audiovisual DBMs in basic and applied research. Our tool illustrates patterns in behavioral data while supporting interactive visual analysis of any subset of derived or raw DBM variables extracted through OpenDBM.Comment: 6 pages, 2 figures, 2022 IEEE VIS Workshop - Visualization in BioMedical A

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Latent Patient Cluster Discovery for Robust Future Forecasting and New-Patient Generalization.

    No full text
    Commonly referred to as predictive modeling, the use of machine learning and statistical methods to improve healthcare outcomes has recently gained traction in biomedical informatics research. Given the vast opportunities enabled by large Electronic Health Records (EHR) data and powerful resources for conducting predictive modeling, we argue that it is yet crucial to first carefully examine the prediction task and then choose predictive methods accordingly. Specifically, we argue that there are at least three distinct prediction tasks that are often conflated in biomedical research: 1) data imputation, where a model fills in the missing values in a dataset, 2) future forecasting, where a model projects the development of a medical condition for a known patient based on existing observations, and 3) new-patient generalization, where a model transfers the knowledge learned from previously observed patients to newly encountered ones. Importantly, the latter two tasks-future forecasting and new-patient generalizations-tend to be more difficult than data imputation as they require predictions to be made on potentially out-of-sample data (i.e., data following a different predictable pattern from what has been learned by the model). Using hearing loss progression as an example, we investigate three regression models and show that the modeling of latent clusters is a robust method for addressing the more challenging prediction scenarios. Overall, our findings suggest that there exist significant differences between various kinds of prediction tasks and that it is important to evaluate the merits of a predictive model relative to the specific purpose of a prediction task

    Atmospheric-Induced Frequency Spread In Optical Waves

    No full text
    This paper introduces analytic expressions for the long time average atmospheric-induced frequency spread of optical waves propagating through clear air turbulence. Spherical wave results are given for the horizontal double-pass case with reflection from a smooth target for bistatic and monostatic channels. The models presented are expected to be valid for weak-to-moderate scintillation environments. The results are discussed in the context of \u27micro Doppler laser radar (LIDAR) target detection systems

    <title>Atmospheric-induced frequency fluctuations in LIDAR</title>

    No full text
    It is well known that the transmission of an optical signal through the turbulent atmosphere results in random phase fluctuations. In turn, these random phase fluctuations impart a random frequency fluctuation onto the optical signal. As laser radar (lidar) systems rely on the evaluation of micro-Doppler frequency shifts of the reflected optical wave to determine certain target characteristics, it is critical to understand the impact of the atmospheric induced frequency fluctuations. Additionally, lidar systems used for defense applications would typically operate in moderate to strong atmospheric turbulence conditions. Hence, for such applications, it is necessary to develop models describing atmospheric induced frequency fluctuations of an optical wave that are valid in all regimes of optical turbulence. In this paper, we present preliminary results for a model of atmospheric induced frequency fluctuations for the double pass propagation problem in weak optical turbulence conditions and a possible method for extension of these results into moderate to strong turbulence conditions

    Atmospheric Induced Frequency Fluctuations In Lidar

    No full text
    It is well known that the transmission of an optical signal through the turbulent atmosphere results in random phase fluctuations. In turn, these random phase fluctuations impart a random frequency fluctuation onto the optical signal. As laser radar (lidar) systems rely on the evaluation of micro-Doppler frequency shifts of the reflected optical wave to determine certain target characteristics, it is critical to understand the impact of the atmospheric induced frequency fluctuations. Additionally, lidar systems used for defense applications would typically operate in moderate to strong atmospheric turbulence conditions. Hence, for such applications, it is necessary to develop models describing atmospheric induced frequency fluctuations of an optical wave that are valid in all regimes of optical turbulence. In this paper, we present preliminary results for a model of atmospheric induced frequency fluctuations for the double pass propagation problem in weak optical turbulence conditions and a possible method for extension of these results into moderate to strong turbulence conditions
    corecore